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The stability of perturbed normal shock waves is considered. Shock perturbations 
depend directly upon the disturbances in the flow adjacent to the shock. In  the 
present paper an initially stationary shock is assumed to be perturbed by 
acoustic waves reaching it from the downstream side. This case corresponds to 
the situation occurring in shock diffraction or reflexion. Two-dimensional 
problems of this type have been investigated previously, both analytically and 
experimentally. These previous analytic results have, in all cases, indicated 
that the perturbations of the shock decay with time as t-s, while experimentally 
both t-4 and t-% decays have been observed. It is demonstrated in the present 
investigation that, when waves are continuously generated at  a point or points 
behind the shock, a t-* decay of the shock perturbations will occur, corresponding 
to the decay of the incident waves. However, when the source of waves is located 
only at the shock, as in a diffraction problem, t-8 decay occurs owing to the 
cancellation, to lowest order, of the incident wave by its reflexion from the shock. 
These results explain the divergence between theory and experiment in this 
area, since the experiments giving the slower decay contained a source of waves 
behind the shock. 

It is concluded that shock stability can only be considered in the context of 
the type of disturbances incident upon the shock. 

1. Introduction 
Although the stability of a shock is of fundamental importance in many 

applications of gasdynamics, this stability has not been fully investigated in 
even the simplest of cases. Most previous investigations have considered a 
specific case and determined a decay law for that particular case, but no general 
results are available for the decay of shock perturbations. Indeed, the pheno- 
mena leading to decay are not clearly understood. 

A shock discontinuity adjusts instantaneously to the adjacent upstream and 
downstream flow conditions. Thus shock perturbations are dependent on the 
perturbations incident on the shock from the adjacent flow. Consider a shock in 
the absence of solid boundaries. One type of shock perturbation may be caused 
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by entropy or vorticity disturbances which are convected by the flow. These 
can only reach a stationary shock from upstream. Pressure disturbances, however, 
propagate through the fluid and can reach the shock from either side. Any 
acoustic pressure disturbance upstream of the shock will reach the shock and 
interact with it. On the downstream side of the shock only that class of waves 
whose component of propagation velocity normal to the shock is greater than 
the flow velocity downstream of the shock will reach the shock. 

These two basic types of disturbances may be divided into three classes: 
entropy and vorticity disturbances upstream of the shock, pressure waves up- 
stream of the shock and pressure waves downstream of the shock. The latter of 
these three cases, corresponding to the perturbations of a shock moving into a 
uniform medium, will be considered below. The pressure waves will be assumed 
to be weak and may be either cylindrical or spherical. The interaction of plane 
waves with a normal shock has been considered previously by Moore (1954) 
and does not lead to decaying shock perturbations. 

PreviousIy work on shock stability, with one exception, has been concerned 
with shock stability in two-dimensional cases and, thus, with cylindrical waves 
behind the shock. Although not directly concerned with stability, Lighthill’s 
(1949) investigation of the diffraction of a blast forms the basis for much of the 
subsequent work. Freeman (1955) made use of Lighthill’s approach in his 
investigation of the shock produced when a corrugated piston is moved impul- 
sively through a gas. He found that the corrugations in the shock decay with 
time as t-8. Similar problems involving corrugated walls and pistons were 
considered by Zaidel (1960), Nikolaev (1965) and Kovitz & Briscoe (1968). 
All of these investigators obtained the t-8 decay law. This decay law was later 
verified experimentally by Briscoe & Kovitz (1968). The second problem which 
has been considered is the passage of a normal shock over an obstacle on the 
wall of a shock tube. This problem was first considered by Freeman (1957), who, 
again, predicted t-8 decay. Experiments, however, did not verify this result. 
Lapworth (1959) reasoned that separation of the unsteady boundary layer 
from the wall at the obstacle, an effect not considered in the theory, would 
adversely effect his experiment and, thus, used only data obtained when the 
shock was near the obstacle to minimize this effect. Yet only ‘fair’ agreement 
with Freeman’s theoretical results could be obtained. Later Bowman (1 966) 
reanalysed all of Lapworth’s data and found a t-4 decay. 

The previous theoretical analyses assumed that the disturbances were gen- 
erated at the shock and subsequently propagated along the shock through the 
fluid behind it. This led to a t-8 decay for cylindrical waves. The experimental 
measurements were less definite with both t-.f and t-3 decays having been ob- 
served. The one-half-power decay occurred when additional disturbances were 
generated behind the shock. 

In  the present analysis the disturbances are assumed to originate at  an 
arbitrary moving point. In this case the three-halves-power decay is obtained 
when the origin of the waves is at  the shock. However, if the waves originate 
behind the shock a one-half-power initial decay occurs when the waves first 
reach the shock, later becoming a three-halves-power decay as the waves interact 
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with the shock a t  greater angles. Thus, if waves are continuously reaching the 
shock, the slower initial decay will dominate and lead to a one-half-power decay 
of the shock perturbations in the two-dimensional case. 

The change in the decay mechanism will be shown t80 result from the increasing 
angle of incidence between the shock and an intersecting cylindrical (or spherical) 
wave generated behind it. The local reflexion coefficient for reflexion of a pressure 
wave from a shock varies strongly with the angle of incidence. At  small angles 
of incidence the reflected wave is very weak and the incident wave decays in a 
geometric manner, like t-4 for cylindrical waves or t-1 for spherical waves. As 
the angle of incidence of the wave approaches its maximum the reflected wave 
becomes strong, which results in a cancellation with the leading term in a pro- 
gressing-wave expansion for the incident wave and yields t-% decay for cylindrical 
waves or t-2 decay for spherical waves. 

2. Basic equations and solutions 
In  the flow behind the shock the propagation of weak waves is governed by 

the equations obtained by linearizing the equations of conservation of mass, 
momentum and energy: 

where the co-ordinates have been chosen so that the unperturbed shock is 
stationary (see figure I ) ,  U ,  p1 and a1 are, respectively, the unperturbed flow 
velocity, density and sound speed behind the shock, and u, v, w, P and p are 
the velocity perturbations in the x, y and z directions, the pressure perturbation 
and the density perturbation. These equations may be combined into the single 

i a2p u a2p a2p PP a2p equation 
-- +2---/32 0 
a: at2 a:atax 8x2 a y  ax2 ’ 

where /I2 = 1 - U21a:. By making a Galilean transformation to co-ordinates 
(xf, y f , z f )  moving with the flow behind the unperturbed shock (see figure 2) in 
(2)) the usual three-dimensional wave equation 

(2) 
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FIGURE 1.  The shock perturbation. 
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FIGURE 2. Flow-fixed and shock-fixed co-ordinates. 

Two types of solutions of (3) will be considered. 
(i) Spherical progressing waves. 

P = (K,sinZq5+K2cos1q5)Pk(cos0) 3 * fm,n(at-R) Rlfn , 
n=O 

(4) 

where Pk(cos8)  is the associated Legendre function of the first kind with 
argument cos 0, R2 = x3 + y? + 23, K ,  and K 2  are constants and 
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fo,,(6) being an arbitrary function of 6. Here R, 19 and qi are spherical co-ordinates, 
qi being the azimuthal angle. The integers 1 and m are determined by the type 
of source present. The general form of progressive-wave solutions is discussed by 
Friedlander (1946). Using these ideas (4) is easily shown to be a solution of (3). 

(ii) ~ y ~ ~ n d r i ~ a ~  progressing waves. 

where r2 = x; + y;, K ,  and hr4 are constants and 

fo,,([) being an arbitrary function of 5. Here r and 0 are plane polar co-ordinates. 
The integer m is determined by the type of source. This cylindrical solution is 
an asymptotic solution of the wave equation for at - r --f 0 and can be obta.ined 
from the integral solution of the two-dimensional wave equation (see Van 
Moorhem 1971). These two sets of solutions represent waves generated at  a 
fixed source and propagating away from that source. 

3. Shock boundary conditions 
The shock forms a boundary for the disturbed region of flow. No waves can 

cross the shock as they would immediately be swept back into the shock. Follow- 
ing the approach used by Moore (1954), the perturbations to the flow variables 
behind the shock can be related to the shock perturbations by the expressions 

and 

where 

and 

A(M)=-*M, 
Y + l  

Po and uo are the pressure and sound speed upstream of the shock, M is the shock 
Mach number Flu,, and 6 is the shock perturbation (see figure 1). 

It is possible to  combine these expressions relating the flow and shock per- 
turbations with the flow equations to obtain a single expression governing the 
pressure perturbation at the shock. This gives 

( 7 )  
Y +  i P,A(M) a2p 0 27 PI a, axat 

_ _  - 1 a2p a2p a2p 

vk at2 ay2 a 2 2  
on x = 0, where 
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The derivation of this boundary condition and its implications are discussed 
by Van Moorhem (1971). 

4. Interaction of the waves and shock 
The interaction of plane waves with a shock has been investigated previously 

by Moore (1954), Brillouin (1955), Johnson & Laporte (1958), D'iakov (1958), 
Bontorovich (1959) and McKenzie & Westphal (1968). These investigators 
found an angle-dependent reflexion coefficient, and a rather peculiar relationship 
between the angles of incident and reflected waves with a maximum angle of 
incidence occurring at  less than 90". This maximum results from the necessity 
that the component of the wave velocity normal to the shock be greater than 
the flow velocity. 

The interactions of both cylindrical and spherical waves with a planar shock 
exhibit many of the characteristics of the plane-wave interaction, but are 
complicated by the possibility of motion of the source of the waves, and the 
difficulty of not knowing a priori the form of the reflected waves. Both of these 
difficulties can be overcome by application of the Lorentz transformation of 
co-ordinates as described by Sears (1  954). 

The Lorentz transformation 

( 8 )  
xf  = (X+J:T)//3,, yf = Y ,  

t = (T+-q/a3/P,, 
where ,5: = 1 - Vt/al, has the property that it leaves the wave equation (3) 
unchanged, while the moving point (xf, yf, zI) = (?: t ,  0,O) is fixed in the Lorentz 
co-ordinates at ( X ,  Y ,  2) = (0 ,  0 , O ) .  If V, is chosen as the velocity of the wave 
source with respect to the fluid behind the shock, the solution of the ordinary 
wave equation as given by (4) or (5) may be directly applied in the Lorentz CO- 

ordinates. On transforming back to the physical co-ordinates the waves due to 
a moving three-dimensional source are obtained as 

where 3: = (Xf-V,t)2+/J:(yq+zq), cos0, = (x,-V,t)/s, 
and a, = a, t - (K/a,) xf - s,. 
For a two-dimensional source 

where s; = ( X J - l g ) 2 + / q y f ,  cos0, = (x,-v,t,/s,, 

sin 0, = p, yf/sc, a, = a,t - (V,/a,) xf- s,. 
The quantities s (either s, or s,) appear in the same manner as distance from the 
source for a stationary wave source, and 0, and 0, are angle-like variables which 
identify the direction of propagation of points on a wave front, but are not 
physical angles. 
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A second Lorentz transformation can now be made by choosing in this case 
V,  = - U ,  the velocity of the shock with respect to the flow behind the shock, 
so that the unperturbed shock is now fixed on the line x’ = 0 and the governing 
equation remains the ordinary wave equation. The shock boundary condition 
(7),  after transformation, becomes 

where 

The general form of the reflected wave is now easily obtained by noting that the 
wave equation is symmetric in S, that is, if B ( X ,  T’, 2) is a solution of the wave 
equation, then F (  - X, Y ,  Z) is also a solution. This procedure is a generalization 
of the method of images and determines the lines of constant phase of the re- 
flected wave, ensuring that they connect with the lines of constant phase of the 
incident wave at the mean shock location. The amplitude of the reflected wave, 
however, remains to be determined from the shock boundary condition. Substi- 
tution of the expressions for the reflected and incident waves into the shock 
boundary condition leads to the conclusion that a single term of the general 
form of (4) or ( 5 )  is not sufficient to satisfy the boundary condition and the 
reflected wave must consist of a sum of terms of the form of (4) or ( 5 )  with the 
coefficients of the lowest-order terms in s-l forming a Fourier series in the case 
of cylindrical waves or a generalized Fourier series in the case of spherical 
waves. Recasting the series representing the reflected wave, substituting both 
it and the incident wave into the boundary condition (11) and equating terms 
of equal order in the ‘distance’ s from the source gives, a t  the unperturbed 
shock location, 

Â  = ( H 2 +  1)/N2, B = 2 { [ M 2  ( y  - I )  + 2]/[2ylCI2 - ( y  - I ) ] } .  

p = (K,sinb~+-K,cos1~)P~(cosOs,,) (1 + ~ ~ ~ s , s ~ ~ f o , , ~ @ ~ , ~ ~ / ~ s , s + ~ ~ ~ , : ~ ~  (12) 
where 

and 
for spherical waves and 

O , ,  = tan-l{Ps(Y2r+z~)~/(U+V,)t}, s:,, = (U+K)2t2+/3 i (y2+z2)  

@s,s = (a1 + V,  U b l )  t - ss,,, 

p = (-3 sin m a , ,  + Kl cos m@c,s) (1 + m @ , , , ) ) f O ,  nt(@c,s)/s!,s + O(s,! )> 

@c, s = (a1 + v, Ula1) t - s c , s  

9 ( 0 j  = - 1 - { 2 B [ a : + ~ ,  U-a,(V,+ V )  c o s ~ ]  [al(V,+ U )  - (a: +J: U )  COSO]) 

(1  3) 
where 

and 

for cylindrical waves. The quantity 

O , ,  = tan-1{psyf/( U + V,) t } ,  s:,, = (6’ + V,)2  t2 +p:yZ 

x {2[a:  + V ,  u - a1(K + V )  cos 0 1 2  - a l p  2 ps 2s in0  

-&a: + U - al(V, + U )  cos O] [ul(E + U )  - (a: + U )  cos O]}-l (14) 

is the reflexion coefficient found by Moore (1954) and others for the interaction 
of plane waves and shocks, but is expressed here in terms of 0 (either O , ,  or 
OC,,) rather than the physical angle 8,. The reflexion coefficient is plotted in 
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FIGURE 3. The reflexion coefficient. 

figure 3 vs. the physical angle of incidence. For small angles of incidence the 
reflexion coefficient is seen to be small and nearly constant for all finite Mach 
numbers. The reflexion coefficient becomes - 1 at the critical angle. This critical 
angle is the maximum angle at  which an acoustic wave can reach the shock, 
Bj = cos-1 (U/a,), and corresponds to 0 = cos-1 [al( U + K)/(uf + UV,)]. 

Examination of the incident and reflected waves indicates that the angles of 
incidence and reflexion are related in the same manner as in the plane-wave 
case. The amplitude of the lowest-order term in 8-1 of the reflected wave is 
determined by the reflexion coefficient for plane waves. The higher-order terms, 
however, do not follow this simple rule (Van Moorhem (1971) has determined 
the amplitude of the higher-order terms for cylindrical waves). 

The shock perturbations may now be determined from (12) or (13) and (6a) .  
The integration cannot be carried out exactly, however the asymptotic form is 
easily determined as 

c = (uo/Po A )  { ( K ,  sin Z$ + K ,  cos Z$) Pk(cos 0,,J 

x ( 1 + W(@,,)  1 8;: j f o ,  m((%, 8 )  dt + O(S,3) 

x (1 + ~ ( @ s , J )  sc;,4Jfo,m(@,,s)Pt + 0(8,,9,> 

( 1 5) 
for spherical waves or 

c = (ao/PoA) {(K3sinm0c,,+K,cosmOc,,) 
(16) 

for cylindrical waves. It is clear that the shock perturbations decay in the same 
manner as the pressure perturbations at the shock. 
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Shock/* 

FIGURE 4. The intersection with the shock of a cylindrical 
or spherical wave emitted at the shock. 

Both the decay of the pressure perturbations at  the shock and the shock 
perturbations are determined by the angle of incidence of the wave fronts, or 
lines of constant phase, a t  the shock. To display the different modes of decay 
of these perturbations the behaviour of the cofficients of the lowest-order term 
in s-1 in each expansion must be determined on a line of constant a. The cylin- 
drical-wave cases (1 3) and (1 6) will be considered in detail, the spherical cases 
(12) and (15) being very similar. 

On a line of constant phase aC,,, all of the coefficients of s;! in (13) and (1  6) 
are dependent only on O,,  and it is the behaviour of O , ,  which must first be 
determined. From (1 3), cos O , ,  and sin O , ,  can be expressed as 

and 

Three cases are now of interest: a wave emitted at the shock, a wave emitted 
far behind the shock and just reaching it, and a wave emitted far behind the 
shock which has interacted with the shock over a long period of time. 

The first case, a wave front emitted at the shock, can be shown from (10) to 
correspond to = 0, thus from (17) 

cos O, ,  = a,( U + K)/(a? + V,  U )  

and sin@,, = [I -a~(U+v, )2 / (a~+~U)2]+.  (18b) 

W a )  

These give the value of a,,  corresponding to the critical angle of incidence and 
to 9(Oc,,)  = - 1.  The same conclusion can be reached from figure 4, which 
shows a wave front emitted at  the shock, and for which the angle of incidence 
is always equal to the critical angle Bi = C O S - ~ (  U/al). The coefficient of sc;; is, 
therefore, zero and the decay is determined by the next term in the expansion. 
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Since @,, is a constant in this case, the second term decays as s;! or t-g for large 
times. 

The second case, a wave emitted behind the shock and just reaching it, corres- 
ponds to a non-zero value of Q,,. If the wave was emitted at  time t = to and 
location xf = 0, yf = 0, the value of QC,, is found from (10) to be (a ,  - V,) to. The 
value of sc,, when the wave initially reaches the shock can be defined to be sint 
and is found from (13) as 

sint = [(u + K) @c,sI/[al(I + V,  u/4) + u +%I. 
The sin@,, and C O S O ~ , ~  can then be expanded in a series of powers of 

(19a) 
(sc,s - s in t ) /Qc , s  J'ielding 

cos 0 , s  = 1 + OC(sc,s - s inJ /Q)> 

Substituting (19) into (14) gives 

Thus for QC,, 9 sC,, - sint (waves emitted far behind the shock) and if hr4 is zero 
in (lo), (13) and (16)) so that no explicit sin@,, terms occur, an initial 8;: or 
t-* decay occurs (if K4 is not zero a [(s,,, - sint)/s,,,]* behaviour occurs). This can 
be seen physically by considering a cylindrical wave emitted far behind the 
shock. When this wave reaches the shock it will initially be at a zero angle of 
incidence, the reflexion coefficient will be nearly constant and the wave will 
decay in a geometric manner, as t-9. 

The third case, that of a wave emitted behind the shock and interacting with 
it over a long period of time, again corresponds to non-zero values of QC,, and to 
large values of sC,,. Assuming QC,, < sC,,, equation (17) can be expressed as 

and 

and @,, is approaching the critical value. 
Substituting (21) into (14) gives 

Thus, 1 +a(@,,) decays as 8;: and the leading terms in (13) and (16) decay as 
sf or t-f for large times. 

The spherical case is similar, with a wave emitted at the shock decaying as 
s,;," or t k2 ,  a wave emitted far behind the shock and just reaching it decaying as 
s-l or t-l and a wave whose angle of incidence is approaching the critical value 
decaying as s - ~  or tk2.  
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5. Conclusions 
The perturbations of a normal shock moving into a uniform medium are 

determined by the prcssure perturbations in the flow behind the shock. These 
pressure perturbations are the result of both incident and reflected waves. The 
reflexion coefficient of a shock is asymptotic to minus one as the angle of incidence 
of the wave approaches the critical angle. Thus, if waves are generated behind 
the shock and subsequently catch up and interact with it,, the shock perturbations 
will initially decay as the incident waves, as t-4 or t-l, for cylindrical and spherical 
waves respectively, before switching to a t-g or t-2 decay as the waves approach 
the critical angle of incidence, where the reflexion coefficient approaches minus 
one. Waves generated a t  the shock, as occur in inviscid shock diffraction and 
reflexion processes, will always propagate a t  the critical angle and will always 
be cancelled to lowest order by their reflexions. Thus they will always decay as 
t-$ for cylindrical waves or t - 2  for spherical waves. This is in agreement with 
previous analytical investigations of shock stability. 

If the shock is perturbed by a continuous influx of waves from a source some 
distance behind it both types of behaviour occur together. As each wave front 
reaches the shock a period of t-4 or t-l decay occurs, in the two- or three- 
dimensional cases, while those waves which reached the shock earlier are decaying 
as t-3 or t-2. The slower decay, of course, will dominate and the resulting shock 
perturbations will behave in that manner. The experiments of Lapworth (1959) 
and Bowman (1 966) have demonstrated this behaviour, for cylindrical waves, 
since waves were continuously being generated by the unsteady separation of 
the boundary layer on the obstacle, producing the predicted t-9 decay. 
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